Low Energy Ion Scattering Quantitative Surface Analysis

$$E_{S} = k \cdot E_{P} = \left(\frac{\cos\Theta + \sqrt{\left(\frac{M_{S}}{M_{P}}\right)^{2} - \sin^{2}\Theta}}{1 + \frac{M_{S}}{M_{P}}}\right)^{2} \cdot E_{P}$$

$$for \quad \frac{M_{S}}{M_{P}} \ge 1$$

Energy of scattered ions (E_s) is following the laws of the **conservation of energy and momentum**

ION

Features of Low Energy Ion Scattering (LEIS)

- > Ultra-high surface sensitivity, top atomic layer analysis
- Static depth profiling information (up to 10 nm)
- Reliable and straight-forward quantification
- Simple analysis of insulators and rough samples
- > Detection of all elements > He
- > Detection limits (of 1 ML):
 - Li O ≥ 1 %
 - F Cl 1 % 0.05 %
 - K U 500 ppm 10 ppm

Brongersma et al., Surf. Sci. Rep. 62 (2007) 63

Brongersma, Low-Energy Ion Scattering, in: Characterization of Materials, Wiley (2012)

Extreme Surface Sensitivity using Noble Gas Ions

 Neutralization effect of noble gas ions when penetrating the surface allows for extreme surface sensitivity

Double Toroidal Energy Analyzer

5

- > High sensitivity and high-resolution analyzer:
 - ✓ Parallel detection of energy
 - ✓ Parallel acceptance of angles (azimuth)
 - Well defined scattering angle for high mass resolution

Detection of All Elements > He

Spectroscopy and Static Depth Profiling

- > Ions can be scattered at the surface, giving element specific surface peak
- Ions are also scattered in deeper layers, undergoing an additional energy loss proportional to the depth
- > When scattered in the volume, a re-ionization at the surface is required for detection. This is promoted by some elements (e. g. oxygen) and gives tails to the left of the peaks
- > Energy loss can be converted to depth

ZrO₂ Atomic Layer Deposition on Silicon

İONTOF

ZrO₂ Atomic Layer Deposition on Silicon

- > Correlation plots: Extrapolation to both axes gives sensitivity factors for pure materials
- > This allows reference free quantification in two component systems (and in many cases also with three components)

ZrO₂ on Si: A non-ideal ALD process

- > Zr peaks develops a tail long before reaching maximum intensity (= layer closure)
- > Coverage and thickness can be measured independently

Catalysis

(Almost) No Influence of Surface Roughness

- Analysis of catalysts with huge surface area routinely done
- > Depth of field of analyzer: approx.
 500 μm

Table 2. Relative LEIS yields of a flat quartz sample and pressed silica powders (300 MPa) with specific surface areas of 50–380 $m^2\ g^{-1}$

Sample	Specific surface area (m² g ⁻¹)	Si	о	Si/O ratio
Quartz	$\sim 10^{-4}$	1.00	1.00	1.00
Aerosil Ox-50	50	0.80	0.84	0.95
Aerosil 130	130	0.77	0.81	0.95
Akzo Düren	185	0.83	0.82	1.01
Aerosil 380	380	0.83	0.84	0.99

Jansen et al., Surf. Interface Anal. 36 (2004) 1469

FoV: 300 x 300 μm²

ONTOF 13

> Pressure gap

- Pressure inside the reactor: ≈ 10 bar
- Pressure inside the analysis chamber: $\approx 10^{-6} 10^{-10}$ mbar
- > Structure gap
 - Low loading, rough surfaces (1000 m²/g) inside the reactor
 - High loading and flat surfaces inside the analysis chamber
- > The Qtac bridges the structure gap but the pressure gap exists partially.
- > Workaround
 - In-situ preparation of the catalyst with subsequent quenching

Single atom heterogeneous catalysis

- > improved efficiency, higher reactivity, and better selectivity
- > lower loading of precious metals

- > Pt/CeO₂, prepared using atom trapping
- > 1, 2, 3, 4 wt. % Pt, 10 h @ 800° C in air
- > At higher loading, large Pt particles expected
- Small Pt particles are not stable at elevated T, evaporation of PtO₂

 \rightarrow either single atoms or large particles

Jones et al., Science (2016)

ACS Catalysis, 2019, DOI: 10.1021/acscatal.8b04885

- Samples and Pt metal cleaned using atomic oxygen \rightarrow no C, organics
- No unexpected elements at the surface >
- Mass resolution not sufficient for Ce/Pt \rightarrow Ne scattering >

ACS Catalysis, 2019, DOI: 10.1021/acscatal.8b04885

SAC – 5 keV Ne⁺ scattering

> Excellent mass resolution

x10¹

> Quantification by comparison to Pt reference

- > Determine LEIS signal for reference PtO₂ 6820 cts/nC
- > Calculate PtO₂ density of reference: 9.01 PtO₂/nm²
- > Calculate PtO₂ density of samples: Y_{LEIS}/6820 * 9.01 PtO₂/nm²
- > Apply small roughness correction catalyst and reference are very different

TOF

- At 1 and 2 wt. %, Pt is present as single atom catalyst <u>quantitat</u> Mew Mexico agreement, no normalization
- > At 3 % loading, 77 % of the atoms are detected in the outer layer
- > At 4 % loading, 69 % of the atoms are in the outer layer
- As large particles only minimally contribute to the surface, their signal is weak in LEIS

Coated particles

$Pt + Al_2O_3$ nanoparticles

- Nanoscale Pt particles are desirable for catalytic activity and efficiency
- Problem: Particle coarsening due to harsh thermal and chemical conditions during catalysis
- > Idea: ALD Al₂O₃ overcoating to prevent particle coarsening

Solano, Dendooven et al. Nanoscale, 2020, 12, 11684–11693, DOI: 10.1039/d0nr02444a

Coated particles

- > XRF (RBS calibrated) quantifies total Pt amount
- > in-situ GISAXS measures particles coarsening
- > LEIS quantifies availability of Pt even after Al₂O₃ overcoat
- > Key result: Isolated particles are required to prevent coarsening by ALD

Solano, Dendooven et al. Nanoscale, 2020, 12, 11684–11693, DOI: 10.1039/d0nr02444a

Ultra-thin films

- > Mo surface peak:
 - Symmetric Gaussian: (sub-)monolayer coverage
 - Peak integral proportional to fraction of surface covered
 - Tail for >1 monolayer developing

Samples courtesy of Jeong-Gyu Song

Diffusion study with in-situ heating – Mo/Si layers

> 5 nm Si / 1.6 nm B_4C / 10 nm Mo, annealing @ 660 deg. C

V. de Rooij-Lohmann, *Appl. Phys. Lett.* **94** 063107 (2009) V. de Rooij-Lohmann, *J. Appl. Phys.* **108** 014314 (2010)

- > 5 nm Si / 1.6 nm B_4C / 10 nm Mo, annealing @ 500 deg. C
- > Diffusion coefficient without B_4C : (8 ± 2) 10⁻²⁰ m²/s
- > Diffusion coefficient with 1.6 nm B_4C : (4 ± 1) 10⁻²¹ m²/s

V. de Rooij-Lohmann, J. Appl. Phys. 108 014314 (2010)

- Sputter and analysis beam conditions are optimised independently
- Sputtering using inert species (usually Ar) at low energy to assure high depth resolution
- Scattering using a noble gas ion beam selected for optimum sensitivity and mass resolution for the elements of interest

Sputter area: 2 x 2 mm² Analysis area: 1.5 x 1.5 mm²

- $\,>\,$ 500 eV Ar sputter profile before and after heating to 300 °C
- > Mn is enriched at the surface and below the Ru
- > Enrichment increased by heating \rightarrow diffusion through Ru film

Energy materials

Electrode/electrolyte interface stabilization

- Li transparent passivation coating on electrode surfaces >
- Wet chemical Al_2O_3 on LiCoO₂ nano-platelets >
- Calcination at 400°C, 500°C, 600°C > for 3 h (Al-400, Al-500, Al-600)
- EDX mapping shows coating, > diffusion of Al present into core
- Quantification of surface > coverage impossible
- > XRD also sees diffusion with T

EDX mapping (10 nm scalebar)

Hu et al., Chem. Mater. 2017, 29, 5896–5905, DOI: 10.1021/acs.chemmater.7b01269

Electrode/electrolyte interface stabilization

Energy (eV)

Hu et al., Chem. Mater. 2017, 29, 5896–5905, DOI: 10.1021/acs.chemmater.7b01269

- Sub-surface Co hardly changing >
- Several 10 % Na detected > (wet chemistry)

sample	Co signal (cts/nC)	Co surface coverage (%)
Bare	2208	100
AI-400	41	2
AI-500	41	2
AI-600	199	9

Electrode/electrolyte interface stabilization

No complete intermixing (otherwise Co surface coverage would be much higher in LEIS)
 → Al ox preferred at surface, also seen in LEIS on CoAl₂O₄

Hu et al., Chem. Mater. 2017, 29, 5896–5905, DOI: 10.1021/acs.chemmater.7b01269

- (La, Sr)₂NiO₄ is a candidate for SOFC cathodes ionic O conductor >
- Authors use LEIS, CTR and angle resolved XPS to analyzer low index faces of as-is and > heat treated crystals (450° C, 72 h in air)
- LEIS data shows surface termination >

La₂NiO₄ single crystals

M. Burriel et al., Energy Environ. Sci. 7, 311 (2014)

M. Burriel et al., Energy Environ. Sci. 7, 311 (2014)

Absence of Ni on outer layer of Sr doped

- > Angle resolved XPS and CTR less surface sensitive
- > Agreement with LEIS findings: no Ni in (110) and (001) w/ and w/o annealing

Depth (nm)	As cleaved single crystal	Heat treated single crystal
0.6	5.3 ± 1.2	6.7 ± 1.9
1.8	8.5 ± 1.6	5.5 ± 1.1
3.5	6.5 ± 1.0	5.2 ± 0.9
4.8	3.9 ± 0.5	$\textbf{4.3} \pm \textbf{0.7}$
5.9	3.4 ± 0.4	4.6 ± 0.6
6.6	3.1 ± 0.4	4.7 ± 0.5
7.0	2.3 ± 0.2	4.5 ± 0.4
Bulk (theoretical)	2.0	2.0

AR-XPS: (La+Sr)/Ni ratio vs. depth

Fig. 2 Crystal truncation rod scattering as measured along the 00L direction in air at 450 °C. Red dots indicate the raw data and solid lines the model CTR patterns for NiO₂ (blue) or (La,Sr)O (green) terminations.

- Fuel cell performance limited by oxygen exchange between solid electrolyte and gas phase
- > Kinetics determined by transport properties and surface chemistry
- > Interface usually not accessible to surface analysis \rightarrow model structure

traditional porous electrode

micropatterned LSCF electrodes on YSZ electrolyte

J. Druce et al., Nucl. Instr. Meth. B, **332** (2014) 261-265

Laterally resolved analysis of fuel cell electrodes

- > Laterally resolved analysis is possible (here: 5 keV Ne scattering)
- > Image resolution $\approx 5 \, \mu m$

J. Druce et al., Nucl. Instr. Meth. B, **332** (2014) 261-265

> LSCF step and electrolyte show no Au signal

- > LSCF mainly terminated by Sr
- > Electrolyte shows some La: Diffusion? Patterning? Electrochemical testing?
- > Electrolyte shows no Y or Zr
 → monolayer contamination by
 Na, Si, Ca segregated from bulk

LSCF

YSZ

82.5 μm

165 µm

330 µm

Summary

- Low energy ion scattering (LEIS) is the most surface sensitive technique available - top atomic layer characterisation
- Static depth profiling provides detailed information up to 10 nm
- LEIS provides straight-forward and matrix effect free quantification
- The superior sensitivity of the Qtac100 double toroidal energy analyser allows real static LEIS analysis even with heavier projectiles at higher energies.
- > The time-of-flight mass filtering significantly improves detection limits
- Ideal in combination with other analytical techniques such as TOF-SIMS or XPS

0000

ones otac 100

otac¹⁰⁰