
Low Energy Ion Scattering
Quantitative Surface Analysis
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Principle of Low Energy Ion Scattering (LEIS)

He+, Ne+, Ar+, Kr+

1 - 8 keV

Energy of scattered ions (ES) is following the 
laws of the conservation of energy and 
momentum
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He+, Ne+, Ar+, Kr+

1 - 8 keV

Features of Low Energy Ion Scattering (LEIS)

˃ Ultra-high surface sensitivity, top 
atomic layer analysis

˃ Static depth profiling information (up 
to 10 nm)

˃ Reliable and straight-forward 
quantification

˃ Simple analysis of insulators and 
rough samples

˃ Detection of all elements > He
˃ Detection limits (of 1 ML): 

- Li - O   ≥ 1 %
- F - Cl   1 % - 0.05 %
- K - U    500 ppm - 10 ppm

Brongersma et al., Surf. Sci. Rep. 62 (2007) 63

Brongersma, Low-Energy Ion Scattering, in: Characterization of Materials, Wiley (2012)
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Extreme Surface Sensitivity using Noble Gas Ions

> Neutralization effect of noble gas ions when penetrating the surface allows for extreme surface 

sensitivity

He+ He+

He0

He0

ΔELoss

Final energy: E1 ( eV )
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Double Toroidal Energy Analyzer

> Crucial for practical work: 
Analysis before destruction

> High sensitivity and high-resolution 
analyzer:

✓ Parallel detection of energy

✓ Parallel acceptance of angles (azimuth)

✓ Well defined scattering 
angle for high mass 
resolution

Position sensitive detector

Primary beam + pulsing system

Sample

Charge compensation
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Detection of All Elements > He
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expands mass scale for heavier elements
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Spectroscopy and Static Depth Profiling

˃ Ions can be scattered at the surface, giving element specific surface peak
˃ Ions are also scattered in deeper layers, undergoing an additional energy loss proportional to 

the depth
˃ When scattered in the volume, a re-ionization at the surface is required for detection. This is 

promoted by some elements (e. g. oxygen) and gives tails to the left of the peaks 
˃ Energy loss can be converted to depth

ZrO2

scattered ion

scattered and

re-ionised ion

Si
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ZrO2 Atomic Layer Deposition on Silicon
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ZrO2 Atomic Layer Deposition on Silicon

> Correlation plots: Extrapolation to both axes gives sensitivity factors for pure materials

> This allows reference free quantification in two component systems (and in many cases also with 

three components)
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ZrO2 on Si: A non-ideal ALD process

3 keV He+ scattering from ZrO2 layers on Si
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˃ Zr peaks develops a tail long before reaching maximum intensity (= layer closure)
˃ Coverage and thickness can be measured independently
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Catalysis
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(Almost) No Influence of Surface Roughness

FoV: 300 x 300 µm2

> Analysis of catalysts with huge 
surface area routinely done

> Depth of field of analyzer: approx. 
500 µm

Jansen et al., Surf. Interface Anal. 36 (2004) 1469

100 µm

SE SI
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Surface Analysis of Catalysts

> Pressure gap

- Pressure inside the reactor: ≈ 10 bar

- Pressure inside the analysis chamber: ≈ 10-6 – 10-10 mbar

> Structure gap

- Low loading, rough surfaces (1000 m2/g) inside the reactor

- High loading and flat surfaces inside the analysis chamber

> The Qtac bridges the structure gap but the pressure gap exists partially.

> Workaround

- In-situ preparation of the catalyst with subsequent quenching 
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Single Atom Catalysts (SAC)

˃ Pt/CeO2, prepared using atom trapping
˃ 1, 2, 3, 4 wt. % Pt, 10 h @ 800°C in air
˃ At higher loading, large Pt particles expected
˃ Small Pt particles are not stable at 

elevated T, evaporation of PtO2

→ either single atoms or large particles

2  n m

Jones et al., Science (2016)

Single atom heterogeneous catalysis
˃ improved efficiency, higher reactivity, and better selectivity
˃ lower loading of precious metals

Nanoparticle Sub-nanoparticle Single atom



15

SAC – 3 keV He+ scattering

˃ Samples and Pt metal cleaned using atomic oxygen 
→ no C, organics

˃ No unexpected elements at the surface
˃ Mass resolution not sufficient for Ce/Pt → Ne scattering

4 %

ACS Catalysis, 2019, DOI: 10.1021/acscatal.8b04885
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SAC – 5 keV Ne+ scattering

˃ Excellent mass resolution
˃ Quantification by comparison to Pt reference
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SAC – quantification

˃ Determine LEIS signal for reference PtO2 – 6820 cts/nC
˃ Calculate PtO2 density of reference: 9.01 PtO2/nm2

˃ Calculate PtO2 density of samples: YLEIS/6820 * 9.01 PtO2/nm2

˃ Apply small roughness correction – catalyst and reference are very 
different
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ACS Catalysis, 2019, DOI: 10.1021/acscatal.8b04885
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SAC – surface fraction

˃ At 1 and 2 wt. %, Pt is present as single atom catalyst – quantitative
agreement, no normalization

˃ At 3 % loading, 77 % of the atoms are detected in the outer layer
˃ At 4 % loading, 69 % of the atoms are in the outer layer
˃ As large particles only 

minimally contribute to the 
surface, their signal is 
weak in LEIS
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Coated particles

Solano, Dendooven et al. Nanoscale, 2020, 12, 11684–11693, DOI: 10.1039/d0nr02444a

˃ Full picture from multiple techniques
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Pt + Al2O3 nanoparticles

˃ Nanoscale Pt particles are desirable for catalytic 
activity and efficiency

˃ Problem: Particle coarsening due to harsh thermal and chemical conditions 
during catalysis

˃ Idea: ALD Al2O3 overcoating to prevent particle coarsening

Solano, Dendooven et al. Nanoscale, 2020, 12, 11684–11693, DOI: 10.1039/d0nr02444a

3 keV He 8 keV Ar
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coated Pt-N
Pt-N

Short annealing @ 800 C

3 h annealing @ 800 C
finally the coating helps!

Coated particles

Accessible Pt (% of total area)

˃ XRF (RBS calibrated) quantifies total Pt amount

˃ in-situ GISAXS measures particles coarsening

˃ LEIS quantifies availability of Pt even after Al2O3 overcoat

˃ Key result: Isolated particles are required to prevent coarsening by ALD

Solano, Dendooven et al. Nanoscale, 2020, 12, 11684–11693, DOI: 10.1039/d0nr02444a
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Ultra-thin films
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MoS2 on Si: An ideal ALD process 
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˃ Mo surface peak:
− Symmetric Gaussian: (sub-)monolayer coverage
− Peak integral proportional to fraction of surface covered
− Tail for >1 monolayer developing Samples courtesy of 

Jeong-Gyu Song
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Diffusion study with in-situ heating – Mo/Si layers

5 nm Si

10 nm Mo

SiO2

Si Wafer

B4C

˃ 5 nm Si / 1.6 nm B4C / 10 nm Mo, annealing @ 660 deg. C

FOM

V. de Rooij-Lohmann, Appl. Phys. Lett. 94 063107 (2009) 

V. de Rooij-Lohmann, J. Appl. Phys. 108 014314 (2010)
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Diffusion study with In-situ Heating

FOM

5 nm Si

10 nm Mo

SiO2

Si Wafer

B4C

V. de Rooij-Lohmann, Appl. Phys. Lett. 94 063107 (2009) 

V. de Rooij-Lohmann, J. Appl. Phys. 108 014314 (2010)

> 5 nm Si / 1.6 nm B4C / 10 nm Mo, annealing @ 500 deg. C

> Diffusion coefficient without B4C : (8  2) • 10-20 m2/s

> Diffusion coefficient with 1.6 nm B4C: (4  1) • 10-21 m2/s
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Ar, Kr, Xe, … 3He, 4He, Ar, …

Sputter area: 2 x 2 mm2

Analysis area: 1.5 x 1.5 mm2

Sputter Depth Profiling

˃ Sputter and analysis beam conditions are 
optimised independently

˃ Sputtering using inert species (usually Ar) 
at low energy to assure high depth 
resolution

˃ Scattering using a noble gas ion beam 
selected for optimum sensitivity and mass 
resolution for the elements of interest
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Ru film with Mn diffusion barrier 

> 1/2/5 nm Ru on 1.5 nm Mn on Si

> Ru surface peak shielded after atomic H treatment

> Mn visible despite a layer of Ru covering it, even at 5 nm Ru – why?
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Ru film with Mn diffusion barrier 

0 10 20 30 40 50 60
0

5

10

15

20

 

 

In
te

n
s
it
y
 (

1
0
0
0
 c

ts
/n

C
)

Sputter ion fluence (1E15 ions/cm²)

room temperature

 Mn (x2)

 Ru

heated to 300 °C

 Mn (x2)

 Ru

> 500 eV Ar sputter profile before and after heating to 300 °C

> Mn is enriched at the surface and below the Ru

> Enrichment increased by heating → diffusion through Ru film
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Energy materials
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Electrode/electrolyte interface stabilization

Hu et al., Chem. Mater. 2017, 29, 5896−5905, DOI: 10.1021/acs.chemmater.7b01269

> Li transparent passivation coating on electrode surfaces

> Wet chemical Al2O3 on LiCoO2 nano-platelets

> Calcination at 400°C, 500°C, 600°C 
for 3 h (Al-400, Al-500, Al-600)

Al-400

Al-500

Al-600

EDX mapping (10 nm scalebar)

> EDX mapping shows coating, 
diffusion of Al present into core

> Quantification of surface 
coverage impossible

> XRD also sees diffusion with T
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Electrode/electrolyte interface stabilization

Hu et al., Chem. Mater. 2017, 29, 5896−5905, DOI: 10.1021/acs.chemmater.7b01269

> LEIS detects Al and residual Co at the 
surface (incomplete coating/diffusion)

> Sub-surface Co hardly changing

> Several 10 % Na detected 
(wet chemistry)

sample

Co signal 

(cts/nC)

Co surface 

coverage (%)

Bare 2208 100

Al-400 41 2

Al-500 41 2

Al-600 199 9

3 keV He

5 keV Ne

O
Na

Al

Co

Co
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Electrode/electrolyte interface stabilization

Hu et al., Chem. Mater. 2017, 29, 5896−5905, DOI: 10.1021/acs.chemmater.7b01269

> Calcination stimulates diffusion processes

> No complete intermixing (otherwise Co
surface coverage would be much 
higher in LEIS) 
→ Al ox preferred at surface, also 
seen in LEIS on CoAl2O4

After coating

Low T

High T

> At similar coulombic efficiency, 
normalised discharge capacity best for Al-600
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Absence of Ni on outer layer of Sr doped 
La2NiO4 single crystals

M. Burriel et al., Energy Environ. Sci. 7, 311 (2014)

˃ (La, Sr)2NiO4 is a candidate for SOFC cathodes – ionic O conductor
˃ Authors use LEIS, CTR and angle resolved XPS to analyzer low index faces of as-is and 

heat treated crystals (450°C, 72 h in air)
˃ LEIS data shows surface termination

Possible terminations of (La, Sr)2NiO4
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Absence of Ni on outer layer of Sr doped 
La2NiO4 single crystals

˃ Angle resolved XPS and CTR less surface sensitive
˃ Agreement with LEIS findings: no Ni in (110) and (001) w/ and w/o annealing

M. Burriel et al., Energy Environ. Sci. 7, 311 (2014)

AR-XPS: (La+Sr)/Ni ratio vs. depth
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Laterally resolved analysis of fuel cell electrodes

˃ Fuel cell performance limited by oxygen exchange between solid electrolyte 
and gas phase

˃ Kinetics determined by transport properties and surface chemistry
˃ Interface usually not accessible to surface analysis →model structure

J. Druce et al., Nucl. Instr. Meth. B, 332 (2014) 261-265 

traditional porous electrode micropatterned LSCF electrodes on YSZ electrolyte
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Laterally resolved analysis of fuel cell electrodes

˃ Laterally resolved analysis is possible (here: 5 keV Ne scattering)
˃ Image resolution ≈5 µm

J. Druce et al., Nucl. Instr. Meth. B, 332 (2014) 261-265 

AuSr, Y, Zr
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Laterally resolved analysis of fuel cell electrodes

˃ LSCF step and electrolyte show no Au signal
˃ LSCF mainly terminated by Sr
˃ Electrolyte shows some La: Diffusion? Patterning? Electrochemical testing?
˃ Electrolyte shows no Y or Zr
→monolayer contamination by
Na, Si, Ca segregated from bulk La

Au
Sr/Y/Zr

J. Druce et al., Nucl. Instr. Meth. B, 332 (2014) 261-265 

La
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Summary

˃ Low energy ion scattering (LEIS) is the most surface 
sensitive technique available - top atomic layer 
characterisation

˃ Static depth profiling provides detailed information up to 
10 nm

˃ LEIS provides straight-forward and matrix effect free 
quantification

˃ The superior sensitivity of the Qtac100 double toroidal 
energy analyser allows real static LEIS analysis even with 
heavier projectiles at higher energies.

˃ The time-of-flight mass filtering significantly improves 
detection limits

˃ Ideal in combination with other analytical techniques 
such as TOF-SIMS or XPS
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