
Fundamentals of machine 
learning: data, models, examples

Ronan Docherty – TLDR Group – 14/07/2024



Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion



Intro

• Neural networks are universal 
function approximators [FA]

• Can be as simple as 𝑓(𝑥) = 𝑥2 or 

complex as 𝑓  =  ቊ
′cat′
′dog′

• Flexible and powerful: can do 
anything from linear regression to 
promptable image generation

(a) Artificial neuron with weights w [AN], (b) 
stacking neurons into network [St], (c) loss 
landscape as a function of w [LL] and (d) an example 
rule to update w to reach the minimum in (c) 
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Problem statement

• It is our job to pick training data, model and task to best show the 
mapping/function we want the NN to learn

𝒙 → 𝑓 𝒙;  𝜽 → ෝ𝒚

𝐿(ෝ𝒚, 𝒚)
Update

5

Data: input to model 𝒙, target 𝒚 Model: predicts ෝ𝒚 given 𝒙 and 𝜽  

Task: how to structure 𝑓, compare ෝ𝒚 to target 𝒚 & update 𝜽?  



Data

• Anything we can represent as numbers: measurements, text, images, 
audio, video, graphs, … can be an input 𝒙 or target 𝒚

• Our training data are samples from some underlying distribution

• NN learns the mapping in the data (not always the mapping we want!)

• More data = better!
6

Just a cool graphic. From [Qt]



Overfitting

• We know classical overfitting & NNs can 
have millions of parameters -> prone to 
overfitting

• How do we detect it? Data splits!
• Train split (70%): we train model on this and 

backpropagate loss

• Validation split (20%): evaluate model loss 
during training, if increasing then we are 
overfitting

• Test split (10%): for comparing to other models

• How do we fix it? More data and model 
regularization

7

From [OF]

From [KO]



Network

• Layers stacked like Lego, output of previous 
layer as input of next layer

• Non-linear activation layers => allows learning 
non-linear functions

• Regularization stops overfitting & speeds up 
training:
• Normalization layers: normalizes activation values 

over a batch of data or layer

• Skip connections: adding/appending output of 
previous layer to a future one

• Dropout: ignore connection from one layer to 
another with probability p

8

From [AF]

From [LB]



Loss function

• Measures how wrong our model is going

• Can be as simple as least-squares loss, a weighted sum 
of other loss functions or structured to reflect your 
problem

• An example:
• Input image, target are numbers/labels (0-10). Say 0=bg, 

1=car, 2=bike, …, 5=truck

• Network’s goal is to predict labels for each pixel in image

• If we used least squares loss, that says classes 0 and 1 are 
more similar than 1 and 5

• This would cause network to learn poorly, so we choose a 
different loss

9

From [MSE]

From [SS]

𝒙

𝒚



Optimizers and gradient descent

• We have fed 𝒙 into 𝑓 and compared its 
output ෝ𝒚 to 𝒚 with 𝐿

• Backpropagation & chain-rule gives us 
gradient of loss w.r.t each parameter in 𝜽

• Update these parameters to ‘move’ in 
direction that minimizes loss

• SGD is the simplest update rule, other 
ways exist, incorporating ideas like 
‘momentum’

• Most common is Adam

10

From [OPT], ignore typo



Implementation 

• Implement these ideas in code with Pytorch

• Structure:
• Data and parameters are tensors (=multidimensional arrays)

• Pack training data into batches (i.e, many 2D images into 3D array)

• This is because a) matrix multiplication is very efficient on GPUs b) 
to reduce number of data copies to CPU and c) smooths our 
gradient descent

• Autodifferentation: track operations on tensors in a 
computational graph to work out loss gradients 

• Side note: Pytorch not just for deep learning, is also a GPU 
accelerated optimizer and matrix multiplier

11
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Fully connected layers

• Also called ‘Feed Forward’, ‘Dense’, or ‘Linear’ layer

• Does the affine operation W @ 𝒙 + 𝒃 on input 𝒙

• W is weights matrix of shape D’ x D, where D is the 
dimension of vector 𝒙 and D’ is the ‘hidden 
dimension’ of the layer [LB]

• Input must be 1D/Vector, output is also a vector

• Can model geometric transformations, projections, 
similarities [LB]

• All-to-all nature of connections means it scales 
poorly as dimension of input increases
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GIF of information flow through 
series of fully-connected layers. 
From [FF]



‘Convolutions’

• FC layers scale badly with input size – 
can we reuse same set of weights across 
different parts of input? Yes!

• Not a real convolution – is cross-
correlation or sliding dot product

• Same set of weights slid across input – 
more efficient & learns general image 
features (edges, textures)

• What we slide is the kernel, length K 
which we move stride S ‘pixels’ at a time

• Input (& output) can be N-dimensional 
(unlike FC layer)

A sharpening kernel. From [WC]
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From [PC]



Convolutional neural nets (CNNs)

• FC layer maps D-dimension vector to D’-dimensions, conv maps D-
channel tensor to D’-channel tensor i.e, a 3-channel RGB image (3x 2D 
arrays) to 32-channel ‘image’ (32x 2D arrays)

• Common to decrease spatial dimensions (pooling/downsampling) and 
increase channels (hidden information)

• U-Net: downsamples spatially then upsamples, creating ‘information 
bottleneck’ 

15

Successive convolutional layers 
learn ‘deeper’ features. From [VG]

U-Net diagram. 
From [UN]



Why use CNNs? A worked example 

16

• Simple task: learn to detect vertical edges in an image

• Two networks: a fully connected layer with 16781312 parameters and a 
convolutional layer with 9 parameters

• Include validation image, never seen by network – how well does it end 
up working?

Sobel vertical edges. From [SW]

𝒙 𝒚 𝒙val 𝒚val

Image credit: Nintendo 



Why use CNNs? A worked example (contd.) 
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Why use CNNs? Results!
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Linear

Up to a scale factor and transposition 
(images in pytorch are h,w), this is the 
Sobel Kernel!

How do they generalize?

Clear overfitting from the 
linear layer



Attention

• For translation tasks, inputs were sequences of 
(embedded) words called ‘tokens’ [AI]

• Modelling whole context (adjective-noun, 
pronouns, …) important

• Q, K, V different learned projections of our 
(embedded) input token sequence (via FCs)

• Computes pairwise similarity of Q & K and 
matches them with V

• ‘How important is each bit of context to each 
token and how should I update its 
representation?’
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Top: attention equation. Bottom: 
attention map for a sentence. 

From [AI]



Transformers
• Positional encoding says where words are in 

sentence (i.e 1st, 2nd, …). Also works for images or 
anything encoded as a sequence

• All-to-all attention -> learns global features & 
propagates info easily

• 𝑂(𝑛2) operations for n tokens – expensive 
computationally

20

Transformer block. From [AI]Right: a simple Vision Transformer (ViT) [VT].  Top: 
cosine positional encoding of image patches [PE]
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Autoencoders & pretraining

• Autoencoder: encoder makes hidden 
representation of input 𝒙, decoder decodes 
to reconstruct original

• Masked Autoencoder: cover 70% of 𝒙, 
encode, decode then compare to original

• Needs to learn general image features to do 
this over many images

• Super easy to get training data: download 
images and cover them with program 

• ‘Self-supervised learning’

22

ViT MAE diagram for pre-training task. A 
similar principle was applied to text MAE for 
GPT. From [MAE]



What is a Foundation Model (FM)?

• Large (many parameters) model trained on 
lots of data for a long time

• Different training stages: self-supervised -> 
supervised -> reinforcement learning

• Designed to be applied to variety of tasks:
• Prompts: additional user inputs that change 

output e.g, text in ChatGPT or DALL-E

• Adaptors: train small head network to use rich 
FM representations for specific task 

• Fine-tuning: retrain all/some of the network 
(expensive!)

23

FM, f𝒙

p

ෝ𝒚 = 𝑓 𝒙;  𝜽, 𝒑

FM, f𝒙 g ෝ𝒚 = 𝑔(𝑓 𝒙 )

frozen weights 

trained for task 



Example: ‘Segment Anything Model’

• Segmentation = assigning class to each pixel (i.e, 0=background, 
1=foreground or 0=chamber, 1=catalyst, 2=bed, …)

• ‘Segment Anything Model’ = heavy autoencoder + promptable decoder

• Produces fg/bg segmentation given prompt (mouse click, bounding box)

• Decoder fast enough to run in real-time in browser! 24

Left: example of a segmentation for 
self-driving cars.
Right: video of SAM producing 
instance segmentations ‘prompted’ 
at the mouse cursor. 
Made using [SAM]

From [SS]

𝒙

𝒚



Demo of my work!

https://www.sambasegment.com/
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Key takeaways

1. NNs approximate the underlying function in our dataset 𝐷 =
{ 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … } – they are statistical models

2. Always withhold part of 𝐷 to evaluate (train/val/test split) model on, 
otherwise can’t trust or compare results

3. More data, larger model (in proportion) => better results [BL] …

4. … but we can be flexible & clever, c.f single image models like SliceGAN 
[SG] or N2F [NF]

𝒙 → 𝑓 𝒙;  𝜽 → ෝ𝒚

𝐿(ෝ𝒚, 𝒚)
Update

27



Field guide

• Use datasets, dataloaders (will need to write your own)

• Use Adam optimizer with default learning rate

• Easiest way to diagnose problems is to look at tensor shapes as they 
pass through layers

• See if you can adapt/finetune/integrate an existing network rather than 
train one from scratch (cheaper!)

• Recommended networks for problems:
• Image problems: U-Net, Vision Transformer

• Text problems: Transformers, Recurrent Neural Network (RNN)

• Predicting on tabular data: Random Forests (XGBoost, LGBM)

• Time series prediction: Long Short-Term Memory (LTSM) network
28



More reading

• Little Book of Deep Learning

• Pytorch intro/tutorial

• 3Blue1Brown deep learning series, especially his attention video

• Sam’s (my supervisor) Coursera 

• deep learning for molecules & materials

• Deep Learning Book (very rigorous)

29

https://fleuret.org/francois/lbdl.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://youtu.be/aircAruvnKk?si=V_Mtn8Rh3SPo8vji
https://youtu.be/eMlx5fFNoYc?si=t82YZdmpYdVtvHYU
https://www.coursera.org/specializations/mathematics-machine-learning
https://dmol.pub/index.html
https://www.deeplearningbook.org/


Any questions?



Thanks to:
Supervisors: Dr Samuel J. Cooper, Dr Antonis Vamvakeros
Collaborators:
• Amir Dahari
• Lei Ge
• Dr Isaac Squires
• Dr Steve Kench

Website:
https://tldr-group.github.io/#/

Github:
https://github.com/tldr-group

Funders:
Centre for Doctoral Training in the Advanced 
Characterisation of Materials (CDT-ACM)
EPSRC and SFI

https://tldr-group.github.io/#/
https://github.com/tldr-group


References
• [FA] K. Hornik et al. ‘Multilayer feedforward networks are universal approximators’. Neural Network, 1989 

https://www.sciencedirect.com/science/article/pii/0893608089900208
• [AN] C. lb, ‘Artifical Neuron Model Diagram’ 

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
• [St] R. Sebastian, Multi-Layer Perceptron 

https://rasbt.github.io/mlxtend/user_guide/classifier/MultiLayerPerceptron/
• [LL] A. Amini et al., ‘Spatial Uncertainty Sampling for Endto-End Control 2019’, arXiv: 1805.04829.
• [Qt] A. Ananthaswamy, ‘How to Turn a Quantum Computer Into the Ultimate Randomness Generator’ 

https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-
generator-20190619/

• [OF] https://www.mathworks.com/discovery/overfitting.html
• [KO] R. Holbrook, https://www.kaggle.com/code/ryanholbrook/overfitting-and-underfitting 
• [AF] N.S. Johnson et al., ‘Invited Review: Machine Learning for Materials Developments in Metals Additive 

Manufacturing.’ Additive Manufacturing 36 https://doi.org/10.1016/j.addma.2020.101641.
• [FF] I. Khan, ‘From ANNs to RNNs’ https://medium.com/unpackai/from-anns-artificial-neural-networks-to-

rnns-recurrent-neural-networks-93b638772fd1
• [LB] F. Fleuret, ‘The Little Book of Deep Learning’ https://fleuret.org/public/lbdl.pdf
• [SS] W. Gu et al., ‘A review on 2D instance segmentation based on deep neural networks’, Image and Vision 

Computing, 2022, doi: 10.1016/j.imavis.2022.104401. 
• [WC] M. Plotke, https://en.m.wikipedia.org/wiki/File:2D_Convolution_Animation.gif

32

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://rasbt.github.io/mlxtend/user_guide/classifier/MultiLayerPerceptron/
https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-generator-20190619/
https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-generator-20190619/
https://www.mathworks.com/discovery/overfitting.html
https://www.kaggle.com/code/ryanholbrook/overfitting-and-underfitting
https://doi.org/10.1016/j.addma.2020.101641
https://medium.com/unpackai/from-anns-artificial-neural-networks-to-rnns-recurrent-neural-networks-93b638772fd1
https://medium.com/unpackai/from-anns-artificial-neural-networks-to-rnns-recurrent-neural-networks-93b638772fd1
https://fleuret.org/public/lbdl.pdf
https://doi.org/10.1016/j.imavis.2022.104401
https://en.m.wikipedia.org/wiki/File:2D_Convolution_Animation.gif


References (contd.)

• [VG] A. Dertat, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-
584bc134c1e2

• [UN] S. Cai et al., ‘A Novel Elastomeric UNet for Medical Image Segmentation’, Frontiers in Aging Neuroscience, 2022, doi: 
https://doi.org/10.3389/fnagi.2022.841297

• [AI] A. Vaswani et al., ‘Attention Is All You Need’. arXiv, 2017. doi: 10.48550/arXiv.1706.03762.
• [GG] https://developers.google.com/machine-learning/gan/gan_structure
• [ST] G. Kogan, ‘Experiments with style transfer’, https://genekogan.com/works/style-transfer/
• [SG] S. Kench and S. J. Cooper, ‘Generating three-dimensional structures from a two-dimensional slice with generative 

adversarial network-based dimensionality expansion’, Nature Machine Intelligence, 2021, doi: 10.1038/s42256-021-00322-
1.

• [PM] J. Stuckner et al. ‘Microstructure segmentation with deep learning encoders pre-trained on a large microscopy 
dataset’. npj Comput Mater 8, 200 (2022). https://doi.org/10.1038/s41524-022-00878-5

• [VT] A. Dosovitskiy et al. ‘An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale’, arXiv, 2021. doi: 
10.48550/arXiv.2010.11929.

• [PE] ] S. Paul and P.-Y. Chen, ‘Vision Transformers are Robust Learners’, arXiv, 2021. doi: 10.48550/arXiv.2105.07581.
• [MAE] K. He, et al. ‘Masked Autoencoders Are Scalable Vision Learners’. arXiv, 2021. doi: 10.48550/arXiv.2111.06377.
• [SAM] https://segment-anything.com/demo#
• [N2F] J. Lequyer et al. ‘A fast blind zero-shot denoiser’. Nature Machine Intelligence, 2022, 

https://doi.org/10.1038/s42256-022-00547-8
• [LLM] Ge, Lei et al. ‘Materials science in the era of large language models: a perspective’, arXiv, 2024. doi: 

https://arxiv.org/abs/2403.06949

33

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://doi.org/10.3389/fnagi.2022.841297
https://doi.org/10.48550/arXiv.1706.03762
https://developers.google.com/machine-learning/gan/gan_structure
https://genekogan.com/works/style-transfer/
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2105.07581
https://doi.org/10.48550/arXiv.2111.06377
https://segment-anything.com/demo
https://doi.org/10.1038/s42256-022-00547-8
https://arxiv.org/abs/2403.06949


Extra slides



Example 1: GANs

• First real generative model

• Game between two networks: generator G 
makes fake data (from seed), discriminator 
D tries to distinguish between real and 
fake data

• Updating weights of G based on how D 
detected fake samples means it makes 
better fake data in future

• Two networks training at once -> unstable!

• Applications: face generation, style 
transfers, etc. 

35

GAN architecture. From [GG]

HD style transfer on a tree. From [ST]



Example 1: ‘SliceGAN’

• 3D experimental data expensive (FIB-SEM) 
or not high resolution (µ-CT)

• Can we use a GAN to go from 2D -> 3D?

• Yes – G makes 3D volume which we slice in 
2D and give to D alongside real 2D patches

• Key assumption: homogeneity

• When trained, G can many different 
volumes at any size

• Trained fresh on a single experimental 
image – ‘material agnostic’

36SliceGAN trained on different inputs. From [SG]



Example 2: ‘Noise 2 Fast’

• In microscopy, often imaging something completely new (with noise!) – 
motivates models that denoise using a single image

• N2F trains CNN to map between ‘checkerboard downsamples’ of image

• Key assumption: noise is spatially uncorrelated 

• Works well and trains fast, but must be trained for each image 37

Left: N2F training process. Right: its application. From [N2F]



Example 3: ‘MicroNet’

• U-Net/autoencoder architectures trained 
on large (100,000) micrographs to do 
multi-phase segmentation – useful for 
finding structure-property relationships

• Shows importance of using relevant 
training data and of feature-learning for 
downstream tasks

38

Left: model diagram – feature learning + classifier. Top: 
performance on test data, model trained on micrographs 

performs better. From [PM]



Example 4: ‘ChatGPT’

39

A multi-scale diagram of LLMs like ChatGPT. (a) attention mechanism on tokens, which forms part of the attention layer in 
the transformer block in (b). Many of these are put into a ‘Large Language Model’ in (c) which is pretrained on masked 
language modelling, via cross entropy loss of predicted tokens. These models are aligned with human preferences via 
reinforcement learning in (d). From [LLM]
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