

In Situ and Operando Electrochemical Techniques

huber scientific

novel measurement solutions

T. M. Huber

Join at menti.com | use code 14141463

Outline:

- Experiments:
 - In situ PLD
 - In situ XPS
 - In situ Auger SEM
 - In situ LASIS
 - In situ NAP XPS
 - In situ XPS
- How to do/start an in situ experiment
- Potential problems on the way
- Tips & tricks on how to set things up
- Electrical measurements, electrode arrangements & designs

iPLD EXACT-XPS EXACT-AEM

In situ definition

Join at menti.com | use code 14141463

In situ (/<u>in 'sitju:</u>, - '<u>saitju:</u>, - '<u>si:</u>-/; often not italicized in English)^{[1][2][3]} is a Latin phrase that translates literally to "on site"^[4] or "in position."^[5] It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in many different

Experimental physics [edit]

In experimental physics *in situ* typically refers to a method of data collection or manipulation of a sample without exposure to an external environment. For example, the Si(111) 7x7 surface reconstruction is visible using a scanning tunneling microscope when it is prepared and analyzed *in sit* **Electrochemistry** [edit]

In electrochemistry, the phrase *in situ* refers to performing electrochemical experiments under operating conditions of the electrochemical cell, i.e., under potential control. This is opposed to doing *ex situ* experiments that are performed under the absence of potential control. Potential control preserves the electrochemical environment essential to maintain the double layer

The term "in situ" changed to "operando" in the research field of catalyst spectroscopy!

Temperature

Production/ deposition

Electrical Measurements

Analytical

Experiments

Real-time impedance monitoring in the PLD

- Equivalent circuit based on Jamnik-Maier model
- Could not be used for NLLS fitting (3D, differential)
- Simplified equivalent circuit for fitting

Multilayers of $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ and $La_{0.8}Sr_{0.2}MnO_{3-\delta}$

- Determine critical thickness
- Investigate co-limitations
- Customize model thin films (Rsurf vs. Rdiff)

Surface manipulaion

surface charge – work function – catalytic activity

C. Riedl, ... M Kubicek et al. J. Mater. Chem. A, (2022) ,10, 2973–2986

M Siebenhofer, ..., M Kubicek J. Electrochem. Soc. (2023) 170 014501

F Fahrnberger, ... M Kubicek Appl. Surf. Sci., (2023), 640, 158312

M Siebenhofer, ... M Kubicek J. of Mater. Chem. A, (2023), 11(24), pp. 12827–12836

M Siebenhofer, ..., M Kubicek Nature Comm., (2024), 15, 1, 1730

Markus Kubicek et al. J. Phys. Energy 2024 roadmap on

"Advanced/operando characterisation of solid state materials and devices for energy applications"

Laser induced breakdown spectroscopy

- Laser pulse evaporates sample
 - (same mechanism as PLD)
- Plasma emits characteristic elemental emission \rightarrow detected and quantified

Melanie Anstiss Tuesday 2A3 St. James 10.30 & Poster on Tuesday

Maximilian Weiss Poster on Tuesday

Spectrometer

optical fibre

collection optics

Gate delay to spectrometer

Camera

Sampl

Timing generator

Dispersive Element

In situ LIBS measurements

0V

0.2

-0.19V -0.62V -1.2V -2V Voltage drop (measured by microelectrodes) 1E-53 bar 2E-06 2E-17 1E-32 Effective p(O2)

 \rightarrow Voltage / p(O₂) drop across sample \rightarrow Large p(O₂) range on just one sample \rightarrow Measure OH uptake laterally

NAP-XPS + EIS measurements

- Direct correlation of surface chemistry and activity
- Example: Sr segregation on $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ (LSC) electrodes

ELECTROCHEMICAL OXYGEN ACTIVITY CONTROL (EXACT) AEM IN UHV

CE conditioning

goal: constant μ(O) in CE high CE capacity $Fe_2O_3 \rightleftharpoons Fe_3O_4$ $Fe_3O_4 \rightleftharpoons FeO$ $FeO \rightleftharpoons Fe$

- $1/3 e^-$ per Fe atom $2/3 e^-$ per Fe atom $2 e^-$ per Fe atom
- -500 mV vs. air -890 mV vs. air -1050 mV vs. air

Christian Melcher Monday 16:35, 5A4 Room: Moore

In situ Auger electron microscopy (AEM) Ni thin film on GDC

- SEM imaging
- spatially resolved surface spectroscopy

FE gun

00:00:00:00

ELECTROCHEMICAL OXYGEN ACTIVITY CONTROL (EXACT) XPS

Stanislaus Breitwieser Talk on Monday

Andreas Nenning Talk and poster on Tuesday -400 mV vs Fe/FeO

600 °C, UHV

GDC thin film on YSZ

Kirsten Rath Talk on Monday 3A4 Moore 12:05

- Compression with anodic bias
- Expansion with cathodic bias YSZ reflex does not shift!

Solid-State Lithium-Ion battery ESRF ID13 Microfocus BL

How to start an in situ project

a) heating

f) sample transfer

b) electrical measurements

e) gasses

g) sensor at the sample

d) polarization

c) cooling

Material incomparability

UHV chambers \rightarrow in situ chambers UHV heaters contain molybdenum

Formula	Melting point
	[°C]
Мо	2623 ⁽¹⁾
MoO ₂	1100 (decom-
	position) ⁽¹⁾
MoO ₃	801 ⁽¹⁾

high vapor pressure! sublimates noticeably at 700 °C

(1)www.webelements.com/compounds/ molybdenum/molybdenum_dioxide.html From: Michael Schmid, www.tuwien.at/en/phy/iap/tools /vapor-pressure-calculator

IAP / Tools / Vapor Pressure Calculator

Structural materials for in situ heater

- Preferable: high temperature oxides
 - e.g. Alumina, Zirconia, Sapphire, Quartz glass,...
- Metals, Ni-based alloys

- Non high temperature materials possible
- BUT anticipate a cooling failure!

Nickel tetracarbonyl & Iron pentacarbonyl

• CO & Ni • CO & Fe

(e.g. stainless steel)

GHS labelling:	
Pictograms	
Hazard statements	H225, H300, H301, H304, H310, H330, H351, H360D, H410
Precautionary statements	P201, P202, P210, P233, P240, P241, P242, P243, P260, P271, P273, P280, P281, P284, P303+P361+P353, P304+P340, P308+P313, P310, P320, P370+P378, P391, P403+P233, P403+P235, P405, P501
IFPA 704 fire diamond)	4 3

4 °C (39 °F; 277 K)		
60 °C (140 °F; 333 K)		
2–34%		
Lethal dose or concentration (LD, LC):		
266 ppm (cat, 30 min)		
35 ppm (rabbit, 30 min)		
94 ppm (mouse, 30 min)		
10 ppm (mouse, 10 min) ^[3]		
360 ppm (dog, 90 min)		
30 ppm (human, 30 min)		
42 ppm (rabbit, 30 min)		
7 ppm (mouse, 30 min) ^[3]		

Plastic components

- Not hydroscopic:
 - PEEK
 - Polyethylene
 - Polypropylene
 - PTFE (Teflon) Max temperature 170°C !
 - PVC
 - Polyimide (Kapton)

Using scroll vacuum pump with Teflon tip seal

Fluorine poisoned surface

Contacts and electrodes

• Platinum

- Platinum Iridium alloys (better mechanical properties & harder)
- Platinum Rhodium alloys (higher temperature stability)
- Tungsten, Tungsten Carbide
- Gold (very soft/ for sealing)
- Silver

From: Michael Schmid, <u>www.tuwien.at/</u> <u>en/phy/iap/tools/vapor-pressure-calculator</u> ₃

In situ / ex situ Clean surface necessary?

- In situ in same chamber/ transport?
- Mean free path at pressure regime?
- Temperature of components
 - Radiation
 - Parts in line of sight?
 - Convection
 - Mean free path at pressure regime?
 - Cooling effects!
 - Conduction
 - Cooling effects!
 - Sensitive parts connected?
- Simple leak test
 - Linear \rightarrow leak
 - Asymptotical → outgassing

The Vacuum Technology Book Volume II

Transport

- Which contaminants are a problem?
- Not from transport: chromium, fluorine, silicon, heavy metals, ...
- From transport: carbon, sulphur, water, CO₂, acidic gases, ...
- **Cooling/heating:** cation diffusion, phase segregation, ...
- Surface cleaning: changing the surface

Important (small) points/problems
Transfer, chamber shape etc.

< 1.10⁻⁷ mbar?

Pressure range?

Spring loaded sliding contacts

Corrosion issues! Use TC type S

Sample platforms

PVD systems (HV)

NAP-XPS (UHV)

Heating

- conduction, convection and radiation
- 1000 \rightarrow 10 mbar (laminar flow)
- 10e⁻⁴ mbar thermal conductivity of the gas low (only heat what's necessary)
 - Radiation \rightarrow line of sight, distance
 - Convection \rightarrow gas pressure & gravity
 - Heat conduction \rightarrow material properties

resistive

Electrode shapes & electrical measurements

Electrical measurements

- Symmetric cell
- Asymmetric cell
 - Large difference in R and C of WE & CE
 - Microelectrode
 - Reference electrode
- Special geometries

Advantages of micro patterned thin film electrodes

- Well-defined geometry (variable L3PB, ...)
- No reference electrode
- Large number of electrodes
- Direct access to active surfaces
- Current voltage measurements

J. Winkler et al., Journal of The Electrochemical Society 145.4 (1998), pp. 1184-1192

a) **Ring geometry** arrangement with carved reference electrode

b) Impedance spectra of LSF on YSZ single crystal sample indicating **four measurement errors**

Widely used 3-terminal measurements

effect of misaligned electrodes

- \rightarrow asymmetric WE and CE
- → potential shift in the reference potential from high to low measurement frequency

High resistive samples/ High frequencies

3-point transfer characteristic

$$\underline{Z}(\omega)_{3\text{-point}} = \frac{\underline{V}}{\underline{I}} = \underline{Z}(\omega)_{2\text{-point, equivalent}}$$

S. Fletcher, Electrochemistry Communications 3.12 (2001), pp. 692-696

Alexander Schmid

a) Wing geometry

b) Current distribution ($\omega \rightarrow \infty$)

- minimal measurement errors
- affordable
 - suitable for different applications

Andreas Nenning et al 2022 J. Electrochem. Soc. 169 094508

The novel "WING GEOMETRY"

Measurement errors for worst case scenario (low-resistive electrodes and identical relaxation times)

<u>3 Error sources:</u>

- 3-point transfer characteristic (high ohmic electrodes and high frequencies)
- 2. Reference potential shift caused by WE/CE
 - Geometrical asymmetry
 - Resistive asymmetry
 - Capacitive asymmetry
- 3. Short circuit effect

The novel "WING" vs. "RING GEOMETRY"

New experimental design for polarization experiments

¹⁸O₂

¹⁸O₂

¹⁸O₂

¹⁸O-

18 02

Temperature & light gradient issues

Light experiments (shadowing problem)

Opto-Ionic effects in SrTiO₃

- Model electroceramic
- Indirect bandgap ~3.2 eV

Viernstein, A., Kubicek, M et al., Adv. Funct. Mater. (2019), 29, 23, 1900196C.

Temperatures at differently sized electrodes

E. Ahlgren, F. W. Poulsen; Solid State Ionics 70/71(1994) 528-532

Impedance spectroscopy on microelectrodes

145 µm squared LSM microelectrode at 760 °C

Institute of Chemical Technologies and Analytics

novel measurement solutions

PIZZA

• Surface de wetting \rightarrow Mozarella

DC-polarization with ¹⁸O tracer

asymmetrically heated set-up

63

Laser induced breakdown spectroscopy

- Laser pulse evaporates sample
 - (same mechanism as PLD)
- Removed material forms plasma
- Plasma emits characteristic elemental emission → detected and quantified

Gate width

Gate delay

Spectrometer

T. M. Huber & E. Navickas et al. ChemElectroChem, 2, 10, 1487–1494, 2015

Evolution of apparent uphill diffusion

66

Voltage effect on oxygen tracer diffusion

T. M. Huber & E. Navickas et al. ChemElectroChem, 2, 10, 1487–1494, 2015

Micro-thermocouple

Visualization of temperature gradients

IN SITU NEUTRON REFLECTIVITY

MINI CHAMBER FOR THIN FILMS & DEVICES

IN SITU I-PLD & I-PVD HEATER

Advantages of micro patterned thin film electrodes

- Well-defined geometry (variable L3PB, ...)
- Reference electrode can be omitted
- Large number of electrodes on each sample
- Direct access to active surfaces in SIMS-studies, ...
- Current voltage measurement measurements

Ridge electrodes, variation of 3PB

Infrared camera

Infratec, ImageIR [®]9300

- 200 μm LSM electrode
- 300 °C furnace temperature
- visualizing temperature gradient

Temperature control

- High frequency resistance R_{hf} is dominated by the ionic oxygen transport resistance of (100) YSZ
- Calibration via reference measurements of YSZ

Impedance in the first 3 nm LSC

- PLD at 600°C and $4 \cdot 10^{-2}$ mbar p(O2), 10 mVAC for impedance
- At the beginning impedance is dominated by Pt grid
- > 125 pulses: 4 resistive contributions can be distinguished

150 pulses = 3 nm

Sheet resistance of the growing film

- Ex situ 4-point Van-der-Pauw measurements
- Expected LSC conductivity
- Slight deviation from ideal behavior \rightarrow non-ideal growth

Multilayers of $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ and $La_{0.6}Sr_{0.4}FeO_{3-\delta}$

- Multilayers show transition between different surfaces (R_s)
- Charge carrier concentration from C_{chem}

Sub-monolayer decoration layers

- Few active centers on the surface
- Co enhances, Sr reduces activity 79

Rupp G.M. et al. Nature Mat. 2017 16(6), 640

New experimental design for polarization experiments

motivation:

- Develop a simple method to study voltage assisted tracer exchange
- Easy to contact
- Highly accurate applied voltage
- Different polarized thin film on one and the same sample

in situ	\Leftrightarrow		ex situ
cooling down changes experimer	nt ⁹	sufficier	nt resources? (time & money)
		surface	with analytic tools accessible
in situ ex situ same surface process?			
process only visible under experimen	tal con	ditions	data possible to interpret?
impurities cause problems			
oxidation \rightarrow reductions make it visible switch the catalyst on and off			
observe the process. e.g. from the interface			
expert in two fields e.g. deposition and measuring at the same time $_{\scriptscriptstyle 82}$			