Ion Migration in Solids (Models, Methods, Materials)

Solid State Ionics 2024, LONDON

Some remarks:

isotope

Ion Migration in Solids (Models, Methods, Materials)

Solid State Ionics 2024, LONDON

hopping concepts

non-nuclear vs nuclear Microscopic VS Macroscopic

 H^+ , Lit, Nat, F, O²⁻

 Aq +

migration vs diffusion. (hopping)

-ast

M. Faraday: diffusion processes in solids 1820

· phase transformations · Oxidation, Corrosion of · sintering PbF_2 · growth of · Jon dynamics'

Cryptalline

Amor-Phons, glassy

Laue, 192

X-vay diffraction

atomic structure of solids

Example:

brass (Messing

 $Zn_{l}Cu$

Separation line oniginal

new brass phase Zn, Cu

brass emiched in Cu, Zu depleted

T = 800°C, 120 min (Kinetics)

a sintered cevanic

· poly cryptalline

· grains and

· grain bonndavies

Sintering at lingh temperatures: $Mg0 (T > 1700 °C)$

Ianic conduction Hivough

(a) Schottky defect

(b) Frenkel defect

AGT, ASCL ASBY, Catz BaF_2

MgD Nacl

defects

interstitial site

Agel: Ast on interstitial cation Frenkel defect site

Catz: F on interstitial anion Frenkel defect site

more types of defects:

5 Types of crystal defects and impurities:-a) Interstitial impurity atom, b) Edge dislocation, c) Self interstitial atom, d) Vacancy, e) Precipitate of impurity atoms, f) Vacancy type dislocation loop, g) Interstitial type dislocation loop, h) Substitution impurity atom 2

Look at the arrangements of Hue jous next to a defect!

5 types

formation of defect:

free

energy (enthalpie)

 ΔG

[defect]

T dependence * dominated by -TAS \cdots -n- ω ΔH at Low Edefect the influence of - TAS is relatively Large!

defect concentration

Oxide ion vacancy

anious on tetrahedral sites (Small Volume) empty octalredral sites

See also CeO2, ZrO2, Th02

CeO,

What happens if you replace 2 Zr4+ with 2 Y 3+ ious?

 Zv^{4+} is replaced with Ca^{2+} : to ensure charge neutrality, an oxygen vacancy is formed.

02 noes this vacancy for diffusion!

 $Y_2O_3 \xrightarrow{\frac{1}{2}v_{02}} 2Y'_{2v} + 30^x_{o} + V''_{o}$ $[V_0^{\circ}] = \frac{1}{2} [Y_{2v}^1]$ $\frac{14}{2002}$ $Ca_{xy}^{\parallel} + V_o^{\prime\prime} + 0\frac{x}{0}$ formation of 0 vacancies CaO $\begin{bmatrix} V_{0} & 1 \end{bmatrix} = \begin{bmatrix} Ca_{2V}^{1} \end{bmatrix}$ Kroger-Vink notation

Gumping of ions

 0000 0000 $\Omega = 1$ 0000 0000

perfect cryptall TOOK

... vemember your lessons on themodynamics

1 : Vacaut Site

Ea: activation energy Ea = Em + Ef 7 juurp vate

What happens on the Angstroim length scale?

fully <u>homo</u>

Potential potential landscapes

S: Symmetric a : asymmetric

regular

- Short range vs. Long range -

Funke, Mūustes Germany

Ea, backward

Localised motion, no long-vange ion transport

Lattice relaxation

RELAXATION VS. BACKWARD JUMP(S) a concept

ion transport/
migration

inumps and relaxation

achivation barrier O.5 eV moderate jou conductor

0. = 2. : SUCCESSful jump

relaxtion of lattice

 \mathscr{D}_{ℓ}

 $1/$ no loach -Wavd jump

number of jumps per second:

 10^{9} s⁻¹ 106 s-1 104 s-1

extremely fast $fas+$

 $< 104.5 - 1$

juurp rate

1 Ea / activation

0.5 eV

Slow to moderate

poor conductor

> 0.5 eV... 1.0eV or light

 $\frac{1}{\tau} = \frac{1}{\tau_{o}} e^{-\frac{E_{a}}{k_{B}T}}$

4 pre-factor contains attempt queuy

attempt frequency:

 $l=\frac{1}{\tau}$

10¹⁴ 5-1 (phonon frequencies)

 $\frac{1}{\tau} = \frac{1}{\tau_0}e^{-\frac{F_q}{k_BT}}$

fast conductor
Slow conductor
Slow conductor

· change Ea Or · manipulate = 1

attempt frequency:

very Low Ea (Meyer-Neldel)

 $lm = \frac{1}{\tau}$

10¹⁴ 5-1 (phonon frequencies)

 $\frac{1}{\tau} = \frac{1}{\tau_0}e^{-\frac{F_a}{T}}$

Fast conductor $\frac{1}{\tau} \propto -\frac{E_a}{R_B} \cdot \frac{1}{\tau}$

· change Ea or · Manipulate 1 (

1 and the Einstein diffusion Coefficient Dsd $\int_{sd} = \frac{a^2}{2d \cdot \tau}$ $DSD = \frac{a^2}{6 \cdot t}$ (a:) jump distance

 $d = 1, 2, 3$ dimensionality
 $(d \in \mathbb{N})$ 1,6: fractal ?

 $d=2$ 2D diffusion, e.g., Lit in LielnCL3

an approximation

D can be converted into a conductivity 3 $J = \frac{3k_{B}T}{Nq^{2}}$ Solid state diffusion
coefficient based on the Qpecies NERNST-EINSTEIN equation

N: no. of charge carriers/ Volume 9 : charge of the mobile $F^{\prime}L^{\prime}A^{+}$ Mg^2

 $DSd = \frac{a^2}{2d\tau}$

f: correlation factor $(0 < f \le 1)$ He: Haven ratio

V
Microscopic (View)

... taken together:

 $D_{\text{tracer}} = H_r \frac{\sigma k_B T}{Nq^2} = f a^2 / (6\tau)$

 $\tau^{-1} = (H_r/f) \frac{6k_B T}{Nq^2a^2} \cdot \sigma$

· simple diffusion mechanism uncorrelated (random) jump diffusion

How to measure $Dov⁻¹2$

METHODS:

QENS 334 K 163 K

FG: field gradient (NMR) MR: mechanical relaxation Villian,

quasi elastic neutron QENS:

T1,2,8 : relaxation NMR MA : motional averaging SAE: Spin-alignment NMR

conductivit or \bullet impedancé

X: WeCR21

· grain boundary vs bulk (intragrain) · jonic vs electronic · dimensionality

many jumps over LOW I at Low barriers (high probability)

· grain boundary vs bulk (intragrain) · jonic VS electronic · dimensionality

high T: probability to detect jumps over high barriers increases

· Short range vs. Long range · correlated vs uncorrelated Successful jumps AC $\begin{array}{rcl} & & \mathcal{L}_{DC} = f(T) \\ & & \mathcal{L}_{AC} = f(T) \end{array}$ $\sqrt{2}$ 2^{1} dispersive region DC Frequeurey

· grain boundary vs bulk (intragrain) · jonic vs electronic · dimensionality forward, backward jumps Localised motions,

NCL behaviour at low T

can also directly be measured : impedance Spectroscopy

 $E_{\alpha} = 2.E_{\alpha}$ (in some cases)

 $\frac{u_{00}}{2} = \frac{Z_{0}}{T} e^{-E_{a}/(k_{B}T)}$

OV $log(2 \cdot t)$ is $\frac{1}{t}$

... polycrystalline samples and single crystals:

 E_{α}^{I}

$\begin{bmatrix} \log(2\cdot\tau) \end{bmatrix}$ E_{α} intrinsic vegion

Zv02, Th02, Ce02 doped with Cao, Mg0, Y2O3, Sc2O3, M2031

extrinsic region

· correlated vs uncorrelated \bullet NMR CONDUCTIVITY needs many spins 2 in g.b. regions · nanocrystalline \bigvee

· Short range vs. Long range

grain boundary vs bulk (intragrain)

· jonic vs electronic

· dimensionality

blocking
electrodes g.b.

 \overline{b}

 \bigcap

· Short range vs. Long range · correlated vs uncorrelated

NMR (74, 23 Na, 1H).)

Conductivity: Zean < 3total

Chronoamperometric meas.

· grain boundary vs bulk (intragrain) · jonic vs electronic

· dimensionality

 $U = \text{const.}$
- 27 $\frac{2\text{cos}u}{\sqrt{2}}$

1007

· grain boundary vs bulk (intragrain) · jonic vs electronic · dimensionality COND. $P = 0.8$ 2^1 P < 0.5 2D 1 1D $2\propto yP$

onigius of fast Some ion trausport examples: \bigcirc μ_{0} $\overline{3}$ 2 in 2/01 $2v0₂$ CaFy $\sqrt{2}$

... a final example:

a 2D journe conductor?

ROSU2F5

(just few imager)

C)

Conductivity isotherms:

activation energy: ~ 0.48eV..0.52eV (F-)

Nyquist phot:

 3647 ! apex: 67 MHz

NMR: 20 spectral deusity function J20 $b)$ $T = 273 K$ $T = 368 K$ 4.0 4.0 \boxplus $Z = 1$ $Z = 3$ • nanocrystalline 3.5 3.0 • microcrystalline $T_{1\rho}^ 0.48(2)$ eV (annealed) $12D$ 3.0 2.0 $log_{10}(1/T_{10}/s^{-1})$ OUR PL 2.5 O-18/P 1.0 2.0 0.0 1.5 nano **C-26** $0.52(3)$ eV -1.0 1.0 J^{2D} micro -2.0 0.5 6.0 2.0 3.0 4.0 5.0 2.5 3.5 4.5 5.0 5.5 3.0 4.0 1000/T/K⁻¹ 1000/ T/K^{-1} () Consistent results! Ea, I, D

Thank you!

and all the best!