

Tutorial: Batteries (incl. K-Ion Batteries)

Yang Xu Yang Xu Solution Solution

24th International Conference on Solid State Ionics, London 14 July 2024

Outline

- A bit about what I research
- A quick recap of battery development
- The holy grail Li-ion battery
- Next generation Li-ion battery
- Beyond Li batteries K-ion (vs. Na-ion) battery

A bit about what I research

Na solid-state electrolytes & interfaces (w/ Dr Rettie, UCL Chem Eng)

Engineering and Physical Sciences Research Council

K-ion battery electrode materials with defects

Xu group

An electrochemical cell includes 3 components:

- Anode (A): oxidation reaction, releasing electrons
- Cathode (C): reduction reaction, accepting electrons
- Electrolyte (E): conducting ion flow, electronically insulating, electrochemically inactive

An electrochemical cell converts chemical energy to electricity through a discharge process.

Look back history: Daniell cell

John Frederic Daniell, FRS https://en.wikipedia.org/wiki/John_Frederic_ Daniell

Daniell cell

https://en.wikipedia.org/wiki/Daniell_cell

Anode: $Zn \rightarrow Zn^{2+} + 2e^{-}$ Cathode: $Cu^{2+} + 2e^{-} \rightarrow Cu$

Overall: $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

Primary battery: low-cost general commodity applications or niche market

Secondary battery: diverse applications

Charge $A^{n+} \rightarrow A$ $C^{n-} \rightarrow C$

Main rechargeable battery chemistries

Chem. Soc. Rev. 2009, 38, 2565

Mechanism: lithium intercalation chemistry (solid state chemistry)

Why Li-ion?

- Smallest and lightest cation as charge carrier
- Occupy empty interstices in host materials
- Move fastest in host materials
- Provide high energy stored in host materials

Battery development

Intercalation cathodes

- Li intercalation in metal disulfides (70's)
- Li-TiS₂ battery (Whittingham, 70's and 80's)
- LiCoO₂ cathode (Goodenough, 1979)
- LiMn₂O₄ cathode (Thackeray, 1984)
- LiFePO₄ cathode (Goodenough, 1997)

Anode materials

- Reversible Li intercalation in graphite (1976)
- Rocking-chair battery demonstrated with LiCoO₂ (Goodenough, 1980)
- LiCoO₂-hard carbon battery commercialized (Sony, 1991)

Noble Prize in Chemistry 2019

M. Stanley

Prize share: 1/3

Whittingham

John B. Goodenough

Prize share: 1/3

II. Niklas Elmehed. © Nobel Media. Akira Yoshino

Prize share: 1/3

Graphite can accommodate ions in its interlayer space. Stoichiometry depends on the size of the ions, e.g., LiC_6 (372 mAh g⁻¹) vs. KC_8 (279 mAh g⁻¹)

Staging: one interlayer space is completely filled before intercalation starts in another layer due to interlayer expansion upon intercalation.

J. Power Sources, 2020, 460, 228062

J. Power Sources, 2020, 460, 228062

- Li⁺ deintercalation at $0.5 \le x \le 1$ causes irreversible structural change
- Co is expensive (relative to Ti, Fe, and Mn) and toxic

(a) Crystal structure of and (b) Li⁺ diffusion tunnel in LiMn₂O₄ Adv. Energy Mater., 2020, 2000997

Mn₂O₄ discharge profiles J. Am. Chem. Soc., 2013, 135, 1167

- High voltage as a cathode (4.0 V)
- Li⁺ deintercalation varies at $0 \le x \le 1$ (vs. $0.5 \le x \le 1$ in Li_{1-x}CoO₂)
- Presence of Mn³⁺ gives a Jahn-Teller distortion that limits cycling
- Rather slow Li⁺ movement and poor e⁻ conductivity

- Li⁺ deintercalation varies at $0 \le x \le 1$ (vs. $0.5 \le x \le 1$ in Li_{1-x}CoO₂)
- Relatively low voltage as a cathode (~3.5 V) Mn-doped LiFePO₄ (LMFP)
- Rather slow Li⁺ movement and poor e⁻ conductivity

Energy density determines the maximum potential of a battery.

- The value of a battery is evaluated by the total usable energy (W h), and the price of a battery is often represented by the price of energy (\$ kW⁻¹ h⁻¹), because this measure can compare any kind of battery regardless of battery size or weight.
- If the energy density (W h kg⁻¹) of a battery is improved, it contributes to a decrease in the cost of energy in the battery.

Trends in energy densities of LIB cells

Next generation LIBs: higher energy density – Li metal anode

Mater. Horiz. 2020, 7, 1937

The gap between theoretical and practical energy density

Mater. Horiz. 2020, 7, 1937

Key technological parameters in improving energy density – cathode coating

- Mass loading of active materials
 - Increasing the loading of active material (>90%)
 - Optimizing ink formulation (conductive carbon, binder, solvent, etc.)
- Thickness and porosity of electrodes

Improving energy density – anode/cathode pairing (N/P ratio)

One repeating layer of double-sided pouch cell

Nat. Energy **2021**, 6, 723

Improving energy density – electrolyte amount (E/C ratio)

	Expt.	Areal capacity (mA h cm ⁻²)	Li thick- ness (µm, N/P)	Electrolyte amount (μ l, g A h ⁻¹)	Charge/dis- charge rate (mA cm ⁻² , C-rate)	Cycle life (number)
	a	0.45	250, 173	100, 210	0.90, 2	>300
ł	b	3.8	250, 20	100, 25	0.76, 0.2	63
	с	3.7	50, 4	100, 25	0.74, 0.2	16
	d	3.8	250, 20	11, 3	0.76, 0.2	12
_	e	3.5	50, 4	11, 3	0.70, 0.2	12

- Unstrained: flooded electrolyte, high N/P ratio, large electrode area
- Small electrode area and large areal capacity
- Low N/P ratio, large areal capacity
- Lean electrolyte, large areal capacity
- Low N/P ratio, lean electrolyte, and large areal capacity

Next generation LIBs: higher energy density – Li-rich & O-redox cathodes

Parent crystal structure of layered Li-rich O-redox cathodes, LiTMO₃ (Li[Li_{1/3}TM_{2/3}]O₂), e.g., $Li_{1,2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2(Li[Li_{0,2}Mn_{0.54}Ni_{0.13}Co_{0.13}]O_2)$

3 -

2

0

50

The oxidation of O²⁻ is typically accompanied by a high voltage plateau (~4.5 V vs. Li⁺/Li for 3d cathodes) on charging followed by an S-shaped discharge profile.

0

0.2

TM and O reduction

100 150 200 250 300 350

Capacity (mAh g^{-1})

Second cycle

Irreversible O-redox activity is seen from the second charging onwards, showing the loss of high-voltage plateau – voltage **hysteresis**

Nat. Energy **2021**, 6, 781

Voltage hysteresis

Nat. Energy **2021**, *6*, 781

Next generation batteries: beyond lithium (sustainability is key)

Nat. Rev. Mater. 2018, 18013; U.S. Geological Survey, Mineral Commodity Summaries 2017

Chem. Rev. 2014, 114, 11636 & 2020, 120, 6358

Challenges of NIBs and KIBs

Chem. Rev. 2020, 120, 6358; Chem. Mater. 2018, 30, 6532

KIBs vs. NIBs: plating potential

Electrochem. Commun. **2015**, *60*, 172

KIBs vs. NIBs: intercalation in graphite – a staging process

Potential / V vs. A/A⁺

Chem. Rec. 2018, 18, 459; Chem 2020, 6, 2442

KIBs vs. NIBs: intercalation in Prussian blue analogues (PBAs)

$K_x M[M'(CN)_6]_{1-y} \cdot \Box_y \cdot zH_2 O (M' = Fe, M = TM, \Box = anion vacancy)$

- Open framework
- Large interstitial sites
- Directional ion diffusion channels
- Versatile TMs
- Two-step redox process involving low-spin (LS)
 Fe connecting to C and high-spin (HS) TM
 connecting to N
- Phase transition

- The PBA framework prefer intercalation of large sized ions.
- K-intercalation voltage is higher than Na-intercalation voltage higher energy density

"Incorporating K-ions in the cathode materials for sodium-ion batteries" 3B6 Materials Discovery/High Entropy Materials 11:20 Tuesday, Room: Gielgud

Chem. Rec. 2018, 18, 459; J. Phys. Chem. Lett. 2013, 117, 21158

PBAs for KIBs: promising results

Half cell

Full cell

- 140-150 mAh g⁻¹ half-cell capacity
- >95% retention @100 cycles
 @ 15 mA g⁻¹
- >90% retention @ 300 cycles
 @ 30 mA g⁻¹
- ~140 mAh g⁻¹ full-cell capacity
- Similar retention as half cells
- 331.5 Wh kg⁻¹ (cathode+anode)

Nat. Commun. 2021, 12, 2167

Other KIB cathodes

A KFeMnO metal oxide

D Capacity Voltage Rate Density Cycle life

ACCEPTED FOR PUBLICATION

27 February 2023

PUBLISHED 6 April 2023 Jacqueline Sophie Edge², Kun Fan⁶, Ling Fan⁷, Jingyu Feng⁵, Tomooki Hosaka⁶, Junyang Hu⁹, Weiwei Huang¹⁰, Timothy I Hyde¹¹, Sumair Imtiaz^{12,13,14}^(D), Feiyu Kang⁹, Tadhg Kennedy^{12,13}, Eun Jeong Kim⁸, Shinichi Komaba⁸, Laura Lander², Phuong Nam Le Pham^{15,16}, Pengcheng Liu¹⁷, Bingan Lu⁷, Fanlu Meng³, David Mitlin¹⁷, Laure Monconduit^{15,16,18}, Robert G Palgrave¹, Lei Qin¹⁹, Kevin M Ryan^{12,13,14}, Gopinathan Sankar¹⁽⁰⁾, David O Scanlon^{1,4,20}, Tianyi Shi¹, Lorenzo Stievano^{15,16,18}⁽⁰⁾, Henry R Tinker¹, Chengliang Wang⁶, Hang Wang²¹, Huanlei Wang³, Yiying Wu¹⁹, Dengyun Zhai⁹, Qichun Zhang²², Min Zhou²¹ and Jincheng Zou⁶

> Capacity Voltage Density Cycle life

> > Chem 2020, 6, 2442

- Currently no cycling data of full cell KIBs with realistic form factors
- Results only relevant if reasonable cycling performance (>1000 cycles) can be demonstrated for the full cell PBA KIB
- More sophisticated techno-economic models required to further the analysis

Chem **2020**, 6, 2442

IOP Publishing J. Phys. Energy 5 (2023) 021502

https://doi.org/10.1088/2515-7655/acbf76

Journal of Physics: Energy

ROADMAP

2023 roadmap for potassium-ion batteries

OPEN ACCESS

CrossMark

RECEIVED 30 September 2022

REVISED 18 January 2023

ACCEPTED FOR PUBLICATION 27 February 2023

published 6 April 2023 Yang Xu^{1,23,*}^(D), Magda Titirici^{2,23}^(D), Jingwei Chen³, Furio Cora^{1,4}, Patrick L Cullen⁵, Jacqueline Sophie Edge²^(D), Kun Fan⁶, Ling Fan⁷, Jingyu Feng⁵^(D), Tomooki Hosaka⁸, Junyang Hu⁹, Weiwei Huang¹⁰, Timothy I Hyde¹¹, Sumair Imtiaz^{12,13,14}^(D), Feiyu Kang⁹, Tadhg Kennedy^{12,13}, Eun Jeong Kim⁸, Shinichi Komaba⁸, Laura Lander²^(D), Phuong Nam Le Pham^{15,16}^(D), Pengcheng Liu¹⁷, Bingan Lu⁷, Fanlu Meng³, David Mitlin¹⁷, Laure Monconduit^{15,16,18}^(D), Robert G Palgrave¹, Lei Qin¹⁹, Kevin M Ryan^{12,13,14}, Gopinathan Sankar¹^(D), David O Scanlon^{1,4,20}, Tianyi Shi¹, Lorenzo Stievano^{15,16,18}^(D), Henry R Tinker¹, Chengliang Wang⁶^(D), Hang Wang²¹, Huanlei Wang³, Yiying Wu¹⁹, Dengyun Zhai⁹, Qichun Zhang²²^(D), Min Zhou²¹^(D) and Jincheng Zou⁶

"Incorporating K-ions in the cathode materials for sodium-ion batteries" 3B6 Materials Discovery/High Entropy Materials 11:20 Tuesday, Room: Gielgud

Get in touch if you are interested in my research, collaborating, or joining my group (y.xu.1@ucl.ac.uk)